модуль упругости - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

модуль упругости - vertaling naar russisch

ОБЩЕЕ НАЗВАНИЕ НЕСКОЛЬКИХ ФИЗИЧЕСКИХ ВЕЛИЧИН, ХАРАКТЕРИЗУЮЩИХ СПОСОБНОСТЬ ТВЁРДОГО ТЕЛА (МАТЕРИАЛА, ВЕЩЕСТВА) УПРУГО ДЕФОРМИРОВАТЬСЯ
Модули упругости

модуль упругости         
( модуль, характеризующий сопротивление материала упругой деформации )
module d'élasticité
модуль продольной упругости         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА МАТЕРИАЛА СОПРОТИВЛЯТЬСЯ РАСТЯЖЕНИЮ, СЖАТИЮ ПРИ УПРУГОЙ ДЕФОРМАЦИИ
Юнга модуль; Модуль продольной упругости; Продольной упругости модуль; Модуль упругости продольной; Модуль нормальной упругости
coefficient d'élasticité longitudinale
модуль объёмной упругости         
  • deadlink=yes}}</ref>
ХАРАКТЕРИСТИКА СПОСОБНОСТИ ВЕЩЕСТВА СОПРОТИВЛЯТЬСЯ ВСЕСТОРОННЕМУ СЖАТИЮ
Модуль объёмной упругости; Модуль всестороннего сжатия; Объёмной упругости модуль; Модуль объёмного сжатия
( модуль, характеризующий сопротивление линейно деформируемого тела изменению его объёма гидростатическим давлением )
module de compression triaxiale

Definitie

МОДУЛИ УПРУГОСТИ
(упругие постоянные) , величины, характеризующие упругие свойства твердых тел (см. Упругость). Модули упругости - коэффициент в зависимости деформации от приложенных механических напряжений (и наоборот). В простейшем случае малых деформаций эта зависимость линейная, а модуль упругости - коэффициент пропорциональности (см. Гука закон). Число модулей упругости для анизотропных кристаллов достигает 21 и зависит от симметрии кристалла. Упругие свойства изотропного вещества можно описать 2 постоянными (см. Ламе постоянные), связанными с модулем Юнга Е = ?/? (? - растягивающее напряжение, ? - относительное удлинение), коэффициент Пуассона ? = ??y?/?х (?y - относительное поперечное сжатие, ?х - относительное продольное удлинение), модулем сдвига G = ?/? ( ? - угол сдвига, ? - касательное напряжение) и с модулем объемного сжатия К = ?/? (? - уменьшение объема). Модули упругости данного материала зависят от его химического состава, предварительной обработки, температуры и др.

Wikipedia

Модуль упругости

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (принимать в итоге первоначальный вид после приложения силы) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

E   = def   d σ d ε {\displaystyle E\ {\stackrel {\text{def}}{=}}\ {\frac {d\sigma }{d\varepsilon }}}

где:

  • E  — модуль упругости;
  • σ {\displaystyle \sigma }  — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы);
  • ε {\displaystyle \varepsilon }  — упругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру).

В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):

E = σ ε {\displaystyle E={\frac {\sigma }{\varepsilon }}} .

Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

  • Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия (удлинения). Часто модуль Юнга называют просто модулем упругости.
  • Модуль сдвига или модуль жесткости (G или μ {\displaystyle \mu } ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения. Модуль сдвига является одной из составляющих явления вязкости.
  • Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.

В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.

Модули упругости (Е) для некоторых веществ:

Voorbeelden uit tekstcorpus voor модуль упругости
1. Это уникальное дерево - самое прочное в мире, а его главная характеристика - модуль упругости равна модулю углепластика.
2. На основании анализа справочных данных были приняты следующие физические параметры материала: модуль упругости, удельный вес, массовая плотность и даже коэффициент Пуассона...
3. В разделе 1: в пункте 1.1.1.1 слова "контролируемого по пунктам 1.3.'.2 и" заменить словами "определенного в пункте 1.3.'.2 или"; в пункте 1.1.1.2 слова "контролируемых по пункту" заменить словами "определенных в пункте"; в пункте 1.1.2: пункт 1.1.2.2.1 изложить в следующей редакции: "1.1.2.2.1.Углеродных волокнистых или углеродных нитевидных материалов, имеющих все следующие характеристики:3801; 3'26 '0 '10 0; 3'26 '0 '80; 6'03 10 000 0"; а) удельный модуль упругости, превышающий 10,15 х 106 м; и б) удельную прочность при растяжении, превышающую 17,7 х 104 м; или примечание изложить в следующей редакции: "Примечания: 1.